
The Adhese VAST JS library is designed to make it easy to integrate VAST ads into video players. It
includes cross-domain safe methods for requesting ads from your Adhese account and convenient
methods for playing and tracking video ads. However, it is not a player on its own and does not
insert anything into the DOM.

1. Load the JavaScript file:
<script type="text/javascript" src="adhese-vast.js"></script>

2. Create an AdheseVastWrapper object:
var wrapper = newAdheseVastWrapper();

3. Register a listener for the ADS_LOADED event fired by AdheseVastWrapper The first
parameter is the event name, and the second is the name of your callback function. This
function will be called when the wrapper is ready to handle your ad request.

wrapper.addEventListener("ADS_LOADED", yourCallBackFunction);

4. Initiate an ad request by providing the host of your Adhese account and the slot path and
target parameters you want to request.

wrapper.requestAds("http://ads.demo.adhese.com", "_test_", ["preroll", "postroll"]);

5. Once the request is finished, AdheseVastWrapper will fire the ADS_LOADED event, and your
callback function will be called. From then on, you can access several properties of the
wrapper object to get info on the ads.

This is a complete example:

Video Integration with VAST

<html>

<head>

 <script type="text/javascript"src="dist/adhese-vast.min.js">

 </script>

</head>

<body>

 <!-- create a player and info pane container -->

 <h1 id="info">

 </h1>

 <div id="player">

 </div>

 <script type="text/javascript">

1

 // just for completing the example, the content that will be shown after the

example ad

 var actualContentSrc = "http://media.w3.org/2010/05/bunny/movie.mp4";

 // get reference to the container elements

 var playerContainer = document.getElementById("player");

 var infoContainer = document.getElementById("info");

 var a = new AdheseVastWrapper(true);

 a.init();

 a.addEventListener("ADS_LOADED", adsAreLoaded);

 a.requestAds("http://ads.demo.adhese.com", "_sdk_example_", ["preroll"]);

 function adsAreLoaded() {

 console.log("adsAreLoaded")

 // if has preroll, show it

 if (a.hasAd("preroll")) {

 // display duration

 infoContainer.innerHTML = "ad takes " + a.getDuration("preroll") + " time,

stay tuned";

 // create source element for video

 var adSrc = document.createElement("source");

 adSrc.src = a.getMediafile("preroll","video/mp4");

 adSrc.type = "video/mp4";

 // create desired video element

 var adPlayer = document.createElement("video");

 adPlayer.width = 640;

 adPlayer.height = 480;

 adPlayer.autoplay = "true";

 // if using a flash based player: make sure adPlayer is a reference to the

flash object and

 allowScripAccess is true

 // event names will be different in flash as well, depending on how video

playback is implemented

 // attach to timeupdate event for passing the currentTime, this allows adhese

to track the actual

 viewing of the ad

 adPlayer.addEventListener("timeupdate", function() { a.timeupdate("preroll",

adPlayer.currentTime); },

 true);

 // clicks on video player should be sent to adhese for handling and reporting

 adPlayer.addEventListener("click", function() { a.clicked("preroll",

adPlayer.currentTime); }, true);

 // when playing has ended, tell and adhese and than continue to showing

content

 adPlayer.addEventListener("ended", function() { a.ended("preroll",

adPlayer.currentTime);

 showActualContentAfterPreroll(); }, true);

2

An Ad Pod is a sequenced group of ads that allows publishers to display multiple ads within a single
ad placement.

In the case of VAST, the ads can play before, during, or after the video content. In this case, ad
pods are very similar to TV commercial breaks.

Pods are populated by Advar templates. We support two formats: VAST XML and JSON.

Fill in the necessary brackets in the following ad pod request URL and paste it into your VAST-
supporting video player.

 //add the source to the video element

 adPlayer.appendChild(adSrc);

 // ad the video element to the player container

 playerContainer.appendChild(adPlayer);

 }

 }

 function showActualContentAfterPreroll() {

 // here comes the code to start your content after the ad

 infoContainer.innerHTML = "Feature film starting. Enjoy!";

 playerContainer.innerHTML = '

 <video

id="video"controls=""autoplay=""width="640"height="480"preload="none"poster="http:

 //media.w3.org/2010/05/bunny/poster.png">

 <source id="mp4"src="http:

//media.w3.org/2010/05/bunny/movie.mp4"type="video/mp4">

 <source id="ogv"src="http:

//media.w3.org/2010/05/bunny/movie.ogv"type="video/ogg"></video>';

 }

 </script>

</body>

</html>

Ad Pods (VAST & JSON)

About Ad Pods

Request

https://ads-[client].adhese.com/m/[adpod type]/sl[position

identification]/[targeting]/?max_ads=[max number of desired ads]&t=[timestamp]

3

https://documentation.adhese.org/books/templating/page/advar-templates

adpod type — adpod for VAST, stack for JSON.
max_ads — the returned number of ads will depend on different parameters, like
availability and targeting, but will never exceed max_ads.

VAST

JSON

Sequence suggestions are optional, and the given sequence number will not end up in the final ad,
but Adhese will do its best to place the ad in the desired position within the pod. If sequence=0 , the
ad is preferred to be placed first in a pod. If sequence=-1 , the ad prefers to be placed last in a pod.
If sequence=1 , it prefers the second place, and so on. This ordering happens after the ads are
selected, so there is no guarantee that an ad with sequence=0 will always be first in the pod (unless
it is the highest priority of all possible options).

You can enter any number as a sequence suggestion. For example sequence=<ADHESE_LIB_ID> (in the
template) will sort the ads in a pod by creative ID.

VAST

JSON

Output

<VAST version="3.0>

 All returned VAST ads.

<VAST/>

{

 "ads": [

	#JSON objects, one per ad.

]

}

Sequencing

Templates

<Ad sequence="0">

VAST ad implementation

</Ad>

4

{

 "sequence": 0,

 "example field": "some value"

}

The sequence field must be added to the main structure of the JSON template. The order
logic will not work if the field is added to a nested object within the JSON template. The field
will be stripped from the response when the Adpod or Stack response is rendered.

Revision #12
Created 6 December 2024 11:59:34 by Casper Steuperaert
Updated 17 April 2025 13:08:05 by Ron Van Maanen

5

