
Information on scripts and templates. Adhese does not restrict advertising to the use of IAB
Standard Formats only. The Adhese Templates solution allows you to wrap more complex creatives
such as overlayers, takeovers or floor ads by adding advanced functionality using JavaScript, HTML
and CSS.

Advar Templates
HTML5 Templates
Template Repository
Adhese Parameters

Server-side request parameters
Parameters for templates and Advar templates
Stack sequence

Runtime time string replacement and encoding

Templating

1

Adhese has introduced a new template format called Advar. Advar templates are pre-defined
creatives to create sophisticated ads consisting of Javascript, CSS, custom JSON objects etc. The
results of Advar templates are pre-made ads, such as a text ad including a small image.

Advar templates can have multiple components (images, videos, texts and URLs) that form the
final creative. The user provides these elements (or parameters) when they create a new Advar ad.
The user responsible for adding a new creative to a campaign does not require coding knowledge
in HTML, CSS or JavaScript. The template predefines the code and presents it as a form to the user.
See Add an Advar creative.

An Advar template always consists of two files:

1. The creative's actual content contains parameters that refer to the properties of an
uploaded creative and its files. Besides any custom parameter defined by the creator of
the Advar template, the creative content can also contain several fixed parameters.

2. A descriptive file generates the form that the user will see and use when uploading an
Advar creative. The file contains a JSON object that defines the different elements
available in the template. It will determine how to render the form to the user.

As with templates, an Advar template can also contain a request element as a parameter. An Advar
template can use all request properties as content. For example, the creative can display the

Advar Templates

2

https://documentation.adhese.org/uploads/images/gallery/2024-06/rLVrXscGrGu5lt0d-advar-templates1.png
https://documentation.adhese.org/books/campaign-management/page/creatives#bkmrk-add-an-advar-creativ

visitor's name if the call to the ad server contains this parameter (and if the value of the name is
available, of course).

The Advar templates screen lists the name of the Advar template in the Format column.

To create a new Advar template:

1. Go to the Administration screen. Click Admin in the left navigation menu.
2. Click Advar templates. The Advar templates screen opens:

3. Click Create an Advar template. The Create a new Advar template screen opens:

Create a new Advar template

3

https://documentation.adhese.org/uploads/images/gallery/2024-10/GPXzVFfZSmpQN8za-schermafdruk-van-2024-10-28-09-33-53.png

4. Enter a name in the Name field. Choose a clear and logical name, such as pp-textad.txt.
5. Insert the code in the File contents field. This code represents the actual content of the

creative and includes parameters that refer to the properties of the uploaded creative and
its files. Refer to the Appendix Parameters for templates and Advar templates for an
overview of the available parameters. Here is an example of some pieces of code:

4

https://documentation.adhese.org/uploads/images/gallery/2024-10/goxF5l1kAjTZTxEn-schermafdruk-van-2024-10-28-09-35-59.png
https://documentation.adhese.org/books/integrations-and-delivery/page/parameters-for-templates-and-advar-templates

Add inline style attributes to an element to specify the design of the ad.

<style>

div {background-image:url(<ADHESE_SWF_SRC_3RD>)}

</style>

<div>

<h1><advar_title></h1>

<p>

<advar_text>

<img src='<ADHESE_SWF_SRC_2ND>' width='<ADHESE_WIDTH>' height='<ADHESE_HEIGHT>'/>

</p>

<p>

<advar_source>

</p>

</div>

6. The Example for creating new ads from this template field contains the descriptive
file and makes it possible to create input fields when using an Advar template file to
upload an ad. These input fields become visible when you select an Advar template as a
creative. The descriptive file contains a JSON object that defines the different elements
available in the template. It will determine how to render the form to the user. It can
contain three types of fields:
1. singleLineText,
2. multilineText, and
3. select (i.e. a list of options).
Below is an example of the corresponding description file for the above Advar template,
followed by a screenshot of the Advar form in the Adhese interface:

{

"files": [{

"default": "",

"doc": "This will be used as logo",

"label": "A first image",

"key": "2nd"

},{

"default": "",

"doc": "This will be used as background",

"label": "A second image",

"key": "3rd"

}],

"advar": "advar_example.txt",

"fields": [{

"default": "",

"doc": "Select the source of your article",

"label": "Article source",

"type": "select",

"key": "<advar_source>",

"options": [{

"value": "afp",

"label": "AFP"

},{

5

"value": "belga",

"label": "Belga"

},{

"value": "reuters",

"label": "Reuters"

}]

},{

"default": "",

"doc": "Fill in the title of your article",

"label": "Title",

"type": "singleLineText",

"key": "<advar_title>"

},{

"default": "",

"doc": "Fill in the text of your article",

"label": "Text",

"type": "multilineText",

"key": "<advar_text>"

}

]}

6

7. Click the Save button.

To edit an Advar template:

1. Go to the Administration screen. Click Admin in the left navigation menu.
2. Click Advar templates.

Edit an Advar template

7

https://documentation.adhese.org/uploads/images/gallery/2024-06/9y47BWXT8dAk2q2v-create-a-new-advar-template3.png

3. In the list of Advar templates, click the Advar template you want to modify. The Edit
template screen opens:

8

https://documentation.adhese.org/uploads/images/gallery/2024-10/tKelyzuwZLeioxWd-schermafdruk-van-2024-10-28-09-37-49.png

4. Change any of the Advar template's details.
5. Click Save.

9

An HTML5 template is a combination of a regular advar template and a folder with HTML, CSS and
JS files. It allows you to use the form functionality of an advar template while storing code and
optional media in a folder structure.

In Admin > Formats and templates > HTML5 templates, you can find all previously created
templates in zip format. When you click on the link, the following screen will appear:

The following options are available:

Upload a new file: click the Upload a new HTML5 template file (ZIP) and choose a file to
upload.
Delete a template: select the file and click the delete button.
Filter the list by typing in the filter box.

Previously created HTML5 templates can be used by clicking the 'Add advar' option in the creative
tab and selecting the correct template in the 'Add Advar Template' dropdown list.

HTML5 Templates
It is not possible to use Adhese macros such as [adheseReplace:xx] or <ADHESE_X> from
within an HTML5 template. Unlike regular (advar) templates, these macros will not work.

Using HTML5 templates

10

https://documentation.adhese.org/books/templating/page/advar-templates
https://documentation.adhese.org/uploads/images/gallery/2024-06/YZrhoCWlIwULQhIU-formats-and-templates4.png

Steps for creating and uploading a new template:

1. Locally, create a new folder in which to store all files
2. Choose a name for the template: [name].zip
3. Create a descr.json file and store it in the main directory of your folder. The content has

to be constructed in the same way you would create a regular advar template. (See step 6
of creating a new advar)

4. Create an index.html file - which will be the starting point for the HTML5 ad - and store it
in the main directory of your folder

5. Make sure to incorporate clickthrough logic. Adhese relies on it to track clicks
correctly.
You can do this by adding the following line of code to your index.html file. Adhese will
add its click tracking URL to this variable, after which you can use it in the rest of your
clickthrough logic.

 <script type="text/javascript">

 var clickTag = '';

 </script>

6. Optionally you can store CSS, JS and images in separate files & folders within the main
directory.

All links in the HTML5 creative, such as the link to an image within the ad, need to
use a relative path, for example: /graphics/ad-image.png or . This enables the ad to be self-contained and,
therefore, to run independently or to render without a network connection. External
libraries and web fonts can be an exception to this guideline.

7. Zip the content of the folder (not the folder itself) and change the name of the zip to
the name of the template

8. Upload the template in the Adhese UI under Admin > Formats and templates > HTML5
templates,

9. Test the template by creating a creative and checking the preview of the banner

Creating a new HTML5 template

Ensure that the filenames only contain alphanumeric characters, dots, and underscores.
Other characters may cause issues when Adhese processes the file!

Troubleshooting HTML5 Templates

11

https://documentation.adhese.org/books/templating/page/advar-templates#bkmrk-create-a-new-advar-t

If an HTML5 template can't be uploaded for some reason, you'll get an error message:

In the case above, hidden files might block Adhese from properly unzipping the archive:

12

https://documentation.adhese.org/uploads/images/gallery/2025-02/rDOAAqkvnajYN1V1-schermafdruk-van-2025-02-21-12-58-35.png
https://documentation.adhese.org/uploads/images/gallery/2025-02/xilX0LY8p1YT27pA-schermafdruk-van-2025-02-21-13-52-42.png

When creating an archive on Mac OS, a hidden __MACOSX folder might be created. These files must
be removed for the upload to succeed (you may need to unzip, delete and re-zip the files).

In the case above, the zip file has been renamed. If the zip file does not match the advar name in
the descr.json file, rename the zip file to match the advar name in the descr.json file, and the
archive can be uploaded.

13

https://documentation.adhese.org/uploads/images/gallery/2025-02/ktFjHchQTyjTAd21-schermafdruk-van-2025-02-21-13-53-00.png
https://documentation.adhese.org/uploads/images/gallery/2025-02/fw10iRzfm81Wf1kg-schermafdruk-van-2025-02-21-13-09-02.png

The Template Repository lets you control Template files and Advar templates using a Git version
control system. Once this option is enabled, you can

store your templates in your own version control system
maintain a detailed history of your changes
effortlessly switch between different versions of your templates
edit templates in your preferred IDE
check out a specific branch in your Adhese account.

The main directory of your repository can be used to store all 'regular' templates. In most
implementations these are no longer used and can therefor be ignored. More relevant are the
advar templates and the 'HTML5' advar templates. Both types will be stored in separate folders: "

Template Repository

Changes in the checked-out version on your Adhese account will be applied to all relevant
creatives and will be pushed online with the next publish.

Directory Structure

14

https://documentation.adhese.org/uploads/images/gallery/2024-10/MiX3h1eIMQJ3BvqO-schermafdruk-van-2024-10-28-09-44-54.png

advar_templates" and "html5_templates".

Each advar template consists of 2 files:

1. The file that contains the actual response template. This file can be made out of HTML,
JSON or XML code. It will depend on the type of integration the template will be used for.
The extension can be .txt or something that matches the content of the template.

2. A description file that contains the form used to create an advar creative. This file will
contain specific JSON markup. More info on this can be found here. The file needs to have
the same name as the first file, followed by the extension .descr .

HTML5 templates are stored as compressed folders using the .zip extension. Each HTML5 template
has their own HTML, CSS and JS structure within that folder and need to have a description file

Advar templates

More info about advar templates can be found here

HTML5 templates

More info about HTML5 templates can be found here

15

https://documentation.adhese.org/uploads/images/gallery/2025-03/zE4DKuQHZYym1FzG-image.png
https://documentation.adhese.org/books/templating/page/advar-templates
https://documentation.adhese.org/uploads/images/gallery/2025-03/eiZK974dcTj9mhfe-image.png
https://documentation.adhese.org/books/templating/page/advar-templates
https://documentation.adhese.org/books/templating/page/html5-templates

named descr.json in the main directory.

The Template Repository screen shows two panels. On the left, you can see a summary of the Git
commits currently used. It contains the Git hash, the branch, and the date and message when it
was committed. On the right, you see a text field and button to change the commit for checkout:

1. Enter branch name or Git hash to use (e.g. origin/master)
2. Press Checkout button

The specified Git commit will be checked out. All the template changes will be applied in the next
publish phase.

To activate this option, please get in touch with our Support department. You will also need to
provide the following information:

the URL of your Git repository, this needs to be accessible from the outside (e.g.
git@github.com:adhese/my_template_repo.git)

We will send you the public SSH key that you need to add to your Git configuration to allow us
access to the repository you would like to use for managing your templates. If you use GitHub, add
this as an SSH key to Your Repo > Settings > Deploy Keys.

Usage

Activation

16

https://documentation.adhese.org/uploads/images/gallery/2025-03/Bcl6xQfATQfWUudg-image.png
mailto:git@github.com

Adhese Parameters

17

Adhese Parameters

The ad server replaces the following list of parameters with the request information for each
personalised request. The parameters can be included in any template, including Advar templates
or third-party code.

Parameter Description

[adheseExpand: <ID>]

[adheseReplace: <ID>] Is replaced by the values sent with the corresponding ID
from the request.

[adheseLogID] A unique number used for reporting.

[adheseRequestData] All parameters used in the ad request.

[adheseRequestDataFlat] Contains the full request as it is sent to the ad server but
replaces all semicolon-separated values by a /prefixValue/
clause.

[adheseSetExpandPrefix: <prefix>]

[adheseTimestampNowMs] Unix timestamp at the moment of sending the response,
the number of milliseconds since 1970-01-01 0:00:00.

[adheseAdditionalRequestParameters:<target>] This parameter can contain additional parameters that are
added to the targets of the request, for example, dmADV
<ADHESE_ADVERTISER_ID>;OR <ADHESE_ORDER_ID>.

[adheseEnv:<KEY>] This parameter is replaced by the environment variable
<KEY> of the request, for example
[adheseEnv:HTTP_HOST]. See
[http://en.wikipedia.org/wiki/Common_Gateway_Interface](
http://en.wikipedia.org/wiki/Common_Gateway_Interface)
for an overview of all environment variables.

[adheseReplace:SL] The value of the string identification for the requested
position.

[adheseReplace:A2] The value of the identification cookie.

[adheseDomain:ad_host], [adheseDomain:click_host],
[adheseDomain:pool_host], [adheseDomain:track_host]

Contains the incoming host for the request. Usefull for 1st
domain implementations with multiple domains.

Server-side request parameters

18

Adhese Parameters

Parameter URIENCODED Description

<ADHESE_ADSPACE_COMMENT> <ADHESE_ADSPACE_COMMENT_URIE
NCODED>

The comment of the booking.

<ADHESE_ADSPACE_END> The end date of a booking.

<ADHESE_ADSPACE_ID> The unique ID of the booking.

<ADHESE_ADSPACE_KEY> <ADHESE_ADSPACE_KEY_URIENCODE
D>

The external reference or key of a
booking.

<ADHESE_ADSPACE_START> The start date of a booking.

<ADHESE_ADVERTISER_ID> The ID of the selected Advertiser
company

<ADHESE_ALT_TEXT> <ADHESE_ALT_TEXT_URIENCODED> The content of the alt text field.

<ADHESE_BODY> <ADHESE_BODY_URIENCODED> The body of the creative (if available).

<ADHESE_CLICK_TAG> <ADHESE_CLICK_TAG_URIENCODED> The click tag of a creative (including
URL).

<ADHESE_CONFIGURABLE_TRACKER_
URL>

<ADHESE_CONFIGURABLE_TRACKER_
URL_URIENCODED>

If configured, the tracking URL that
has been configured in the
configuration.

<ADHESE_CREATIVE_ID> The unique ID of the link between the
booking and the creative.

<ADHESE_CREATIVE_NAME> <ADHESE_CREATIVE_NAME_URIENCO
DED>

The name of the creative.

<ADHESE_DELIVERY_MULTIPLES> <ADHESE_DELIVERY_MULTIPLES_URIE
NCODED>

The delivery multiples value of the
booking.

Parameters for templates and
Advar templates

When working with advar templates & advar creatives, you need to use the 2ND (and
higher) macro's when adding macro's related to uploaded creative files. Examples are
<ADHESE_EXT_2ND>, <ADHESE_SWF_SRC_2ND>

19

<ADHESE_DELIVERY_MULTIPLES_GRO
UP_ID>

<ADHESE_DELIVERY_MULTIPLES_GRO
UP_ID_URIENCODED>

The group ID for the delivery
multiples, if needed.

<ADHESE_DURATION>,
<ADHESE_DURATION_2ND>,
<ADHESE_DURATION_3RD>,
<ADHESE_DURATION_4TH>,
<ADHESE_DURATION_5TH>,
<ADHESE_DURATION_6TH>

 The duration of the uploaded video
files in seconds.

<ADHESE_DURATON_MS>,
<ADHESE_DURATON_MS_2ND>,
<ADHESE_DURATON_MS_3RD>,
<ADHESE_DURATON_MS_4TH>,
<ADHESE_DURATON_MS_5TH>,
<ADHESE_DURATON_MS_6TH>

The duration of the uploaded video
files in milliseconds.

<ADHESE_EXT>,
<ADHESE_EXT_2ND>,
<ADHESE_EXT_3RD>,
<ADHESE_EXT_4TH>,
<ADHESE_EXT_5TH>,
<ADHESE_EXT_6TH>

<ADHESE_EXT_URIENCODED>,
<ADHESE_EXT_2ND_URIENCODED>,
<ADHESE_EXT_3RD_URIENCODED>,
<ADHESE_EXT_4TH_URIENCODED>,
<ADHESE_EXT_5TH_URIENCODED>,
<ADHESE_EXT_6TH_URIENCODED>

The file extension of each uploaded
file.

<ADHESE_EXTRA_FIELD_1> <ADHESE_EXTRA_FIELD_1_URIENCOD
ED>

The content of the extra field 1.

<ADHESE_EXTRA_FIELD_2> <ADHESE_EXTRA_FIELD_2_URIENCOD
ED>

The content of the extra field 2.

<ADHESE_FORMAT> <ADHESE_FORMAT_URIENCODED> The format of the booking.

<ADHESE_HEIGHT_LARGE_3RD>,
<ADHESE_WIDTH_LARGE_3RD>

 The dimensions of the third file that is
uploaded.

<ADHESE_HEIGHT_LARGE_4TH>,
<ADHESE_WIDTH_LARGE_4TH>

 The dimensions of the fourth file that
is uploaded.

<ADHESE_HEIGHT_LARGE_5TH>,
<ADHESE_WIDTH_LARGE_5TH>

 The dimensions of the fifth file that is
uploaded.

<ADHESE_HEIGHT_LARGE_6TH>,
<ADHESE_WIDTH_LARGE_6TH>

 The dimensions of the sixth file that is
uploaded.

<ADHESE_LIB_ID> The unique ID of a creative in Adhese.
This ID can be used to make
JavaScript functions unique.

<ADHESE_ORDER_ID>

<ADHESE_ORDER_NAME> <ADHESE_ORDER_NAME_URIENCODE
D>

The name of the campaign.

<ADHESE_ORDER_PRIORITY> <ADHESE_ORDER_PRIORITY_URIENCO
DED>

20

<ADHESE_POOL_PATH> <ADHESE_POOL_PATH_URIENCODED
>

The location of where the ad is
located on the server.

<ADHESE_POSITION> <ADHESE_POSITION_URIENCODED> The position of the booking.

<ADHESE_PRIORITY> <ADHESE_PRIORITY_URIENCODED> The priority of the campaign.

<ADHESE_SHARE> <ADHESE_SHARE_URIENCODED> Deprecated.

<ADHESE_SWF_SRC>,
<ADHESE_SWF_SRC_2ND>,
<ADHESE_SWF_SRC_3RD>,
<ADHESE_SWF_SRC_4TH>,
<ADHESE_SWF_SRC_5TH>,
<ADHESE_SWF_SRC_6TH>

<ADHESE_SWF_SRC_URIENCODED>,
<ADHESE_SWF_SRC_2ND_URIENCODE
D>,
<ADHESE_SWF_SRC_3RD_URIENCODE
D>,
<ADHESE_SWF_SRC_4TH_URIENCODE
D>,
<ADHESE_SWF_SRC_5TH_URIENCODE
D>,
<ADHESE_SWF_SRC_6TH_URIENCODE
D>

The target URLs of the uploaded files,
will be empty in case not uploaded.

<ADHESE_TAG> <ADHESE_TAG_URIENCODED> The complete HTML code of an ad:
object/embed code in case of a .swf
file, JavaScript in case of third-party
code, or img link tags in case of a
static image.

<ADHESE_TEMPLATE_CODE> <ADHESE_TEMPLATE_CODE_URIENCO
DED>

The code of the template for the
position of the booking.

<ADHESE_TEMPLATE_CODE_EXPORT> <ADHESE_TEMPLATE_CODE_EXPORT_
URIENCODED>

The export code of the template of
the creative.

<ADHESE_TRACKING_URL> <ADHESE_TRACKING_URL_URIENCOD
ED>

The URL for tracking 3rd party
impressions.

<ADHESE_URL> <ADHESE_URL_URIENCODED> The target URL or landing page of the
ad, as determined by the user.

<ADHESE_IMPRESSION_TRACKING_UR
L>

<ADHESE_IMPRESSION_TRACKING_UR
L_URIENCODED>

The URL to count trackable
impressions

<ADHESE_VIEWABLE_TRACKING_URL
>

<ADHESE_VIEWABLE_TRACKING_URL_
URIENCODED>

The URL to count viewable
impressions.

<ADHESE_WIDTH>,
<ADHESE_HEIGHT>

 The dimensions of the first uploaded
file.

<ADHESE_WIDTH_LARGE>,<ADHESE_
HEIGHT_LARGE>

 The dimensions of the second file that
is uploaded.

21

Adhese Parameters

The sequence parameter can be used in advar templates to sort ads within the request response,
and is therefore only relevant for stack implementations where multiple ads are returned for one
placement. Some examples are:

VAST Adpods
Digital Out Of Home playlists
Native advertising

Sequence suggestions are optional, and when implemented, Adhese will do its best to place the ad
in the desired position within the response.
You can enter any number as a sequence suggestion, but obviously, it only makes sense to use
unique numbers. An option is to use Adhese macros such as <ADHESE_LIB_ID> to implement sorting
based on the creative ID.

VAST

If sequence=0 , the ad is preferred to be placed first in a pod. If sequence=-1 , the ad prefers to be
placed last in a pod. If sequence=1 it prefers the second place and so on. This ordering happens
after the ads are selected, so there is no guarantee that an ad with sequence=0 will always be first
in the pod (unless if it is the highest priority of all possible options).

JSON

Stack sequence
Sequencing

The sequence value is stripped from the response when the adpod or stack response is
rendered.

Templates

<Ad sequence="0">

VAST ad implementation

</Ad>

22

https://documentation.adhese.org/books/templating/page/parameters-for-templates-and-advar-templates

The sequence field must be added to themain structure of the JSON template. The order
logic will not work if the field is added inside a nested object in the JSON structure.

{

 "sequence": 0,

 "example field": "some value"

}

23

Adhese contains a number of scripts that can be added to any kind of template and will be
interpreted at runtime. This allows you to create complex templates where variables can be
transformed or encoded via the adheseScript tags.

The scripts are useful for URL encoding, JavaScript escaping, string replacement and other similar
tasks.

Tags in the format [adheseScript...] have a corresponding [/adheseScript] . Each tag applies
some modifications to the text in between these tags.

Note that it is possible to nest these tags to apply multiple operations to the same text. The tags
are then applied one at a time, with the inner ones being applied first and then the outer ones.

Example of nested tags:

Let's look at some tags in more detail.

Searches the enclosed input text for the first parameter and replaces it with the second parameter.
Search and replace is done with literal text, not with regex.

This results in

Runtime time string replacement
and encoding

[adheseScriptBase64Decode]

 [adheseScriptReplace:-:l]he--o wor-d[/adheseScript]

[/adheseScript]

Non-escaping script tags

adheseScriptReplace

[adheseScriptReplace:-:l]he--o wor-d[/adheseScript]

24

Puts the enclosed input text in lowercase.

results in

Applies Base64 decoding to the enclosed input text.

results in

Applies UriEncoding to the enclosed input text.

results in

hello world

adheseScriptLower

[adheseScriptLower]FOOBAR[/adheseScript]

foobar

adheseScriptBase64Decode

[adheseScriptBase64Decode]What a nice string of characters[/adheseScript]

V2hhdCBhIG5pY2Ugc3RyaW5nIG9mIGNoYXJhY3RlcnM=

adheseScriptUriEncode

[adheseScriptUriEncode]What a nice string of characters[/adheseScript]

What%20a%20nice%20string%20of%20characters

Escaping script tags

25

By default, some escaping is applied to any [adhese...] tags. If multiple tags are nested inside
each other, the default escaping will only be applied once, after the final tag is executed.

The default escaping does the following:

This should be sufficient for the majority of use cases. However, there may be edge cases where
additional control over escaping is required. This can be achieved by utilising one of the tags
outlined below.

For example:

When used within XML without CDATA tags (although we recommend the use of CDATA
tags instead of more complex escaping techniques)
When multiple payloads are nested within each other, a single round of escaping is not
enough. The default escaping process would protect against the injection of malicious
code into the JavaScript, but an attacker would be able to inject malicious code into the
inner HTML. To ensure security, this tag must be escaped twice.

var foo = "";

When [adhese...] tags are placed directly inside HTML without being enclosed in ' or "
By default < and > are not escaped, so an attacker could insert any HTML they want.

<h1>[adhese...]</h1>

If the outermost tags apply to escape (as in one of the tags listed below, except for
adheseScriptEscape), then the default escaping is disabled.

If JSON is requested, additional JSON escaping will be applied. This additional escaping is the same
as the default escaping described above, with the exception of single quotes and]]> , which are
not escaped. Additional escaping is applied even when the default escaping is turned off.

' ? \'

" ? \"

\ ? \\

]]> ?]]]]><![CDATA[>

\b \t \n \r \f

unicode characters outside the range 32, 0x7f

adheseScriptEscapeXMLCDATA
]]> ?]]]]><![CDATA[>

26

Useful in XML CDATA tags when the default escaping breaks things by escaping too much.

Useful for escaping inside XML that does not use CDATA tags.

See https://commons.apache.org/proper/commons-text/javadocs/api-
release/org/apache/commons/text/StringEscapeUtils.html#escapeXml11(java.lang.String) for
details.

Equivalent to the default escaper but doesn't escape]]>

Useful for js. Doesn't escape / so don't use it directly in a js regex replace

Equivalent to adheseScriptEscapeJSStringWFS but it also escapes /

see also: https://commons.apache.org/proper/commons-text/javadocs/api-
release/org/apache/commons/text/StringEscapeUtils.html#escapeEcmaScript(java.lang.String)

applies https://commons.apache.org/proper/commons-text/javadocs/api-
release/org/apache/commons/text/StringEscapeUtils.html#escapeHtml4(java.lang.String)

but also escapes ' ? '

Escapes nothing, which is useful for JSON fields that are not embedded into something else (as the
separate JSON escaping is enough there).

adheseScriptEscapeXML

adheseScriptEscapeJSStringWFS

adheseScriptEscapeJSString

adheseScriptEscapeHTML

adheseScriptEscapeNone

27

https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeXml11(java.lang.String)
https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeXml11(java.lang.String)
https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeEcmaScript(java.lang.String)
https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeEcmaScript(java.lang.String)
https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeHtml4(java.lang.String)
https://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringEscapeUtils.html#escapeHtml4(java.lang.String)

